靶向调控HO-1/NOX2治疗帕金森病的新进展

王玉敏, 王月华, 杜冠华, 王洪权

中国药学杂志 ›› 2015, Vol. 50 ›› Issue (23) : 2024-2027.

PDF(555 KB)
PDF(555 KB)
中国药学杂志 ›› 2015, Vol. 50 ›› Issue (23) : 2024-2027. DOI: 10.11669/cpj.2015.23.003
综述

靶向调控HO-1/NOX2治疗帕金森病的新进展

  • 王玉敏1a, 王月华2, 杜冠华2*, 王洪权1b,2*
作者信息 +

Research Progress of Targeting HO-1/NOX2 Pathway for the Treatment of Parkinson's Disease

  • WANG Yu-min1a, WANG Yue-hua2,DU Guan-hua2*,WANG Hong-quan1b,2*
Author information +
文章历史 +

摘要

探讨氧化应激参与帕金森病(PD)的发病机制。还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶 (NADPH oxidases,NOX)介导产生的活性氧参与帕金森病病理机制,笔者就还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶在帕金森病中的作用的研究历史进行了梳理,同时对血红素氧化酶-1在帕金森病中的神经保护作用及其与还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶的相互关系进行了综述,提出通过调控HO-1并可经还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶/活性氧通路能够在帕金森病中具有抗损伤作用,因此,筛选调控HO-1/NOX2轴有可能成为帕金森病治疗的新靶点。

Abstract

Accumulating evidence strongly supports the involvement of oxidative stress in the etiology of Parkinson's disease (PD). ROS derived from the NOX2-containing NADPH oxidase play important role in the pathogenesis of PD. Our intent was to review the research history about the role of NOX2-containing NADPH oxidase in PD. Neuroprotective effect of heme oxygenase-1 (HO-1) in protecting neurons against PD-related neurotoxin-induced oxidative stress dependant injury, and a major emphasis has been on the relationship between HO-1 and NOX2-containing NADPH oxidase.Specific activation of HO-1 gene expression by pharmacological modulation may represent a novel target for therapeutic treatment of PD through inhibiting NOX/ROS. A new target for PD therapy through inhibiting NOX/ROS, thereby modulating HO-1/NOX2 axis is highlighted.

关键词

还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶 / 血红素加氧酶-1 / 帕金森病 / 神经保护

Key words

NADPH oxidases / heme oxygenase-1(HO-1) / Parkinson's disease / neuroprotection

引用本文

导出引用
王玉敏, 王月华, 杜冠华, 王洪权. 靶向调控HO-1/NOX2治疗帕金森病的新进展[J]. 中国药学杂志, 2015, 50(23): 2024-2027 https://doi.org/10.11669/cpj.2015.23.003
WANG Yu-min, WANG Yue-hua,DU Guan-hua,WANG Hong-quan. Research Progress of Targeting HO-1/NOX2 Pathway for the Treatment of Parkinson's Disease[J]. Chinese Pharmaceutical Journal, 2015, 50(23): 2024-2027 https://doi.org/10.11669/cpj.2015.23.003
中图分类号: R741.05   

参考文献

[1] XIE T, DU G H. Cytokines and Parkinson's disease[J]. Chin Pharm J(中国药学杂志), 2014,49(20):1773-1777.
[2] LI X X, DU G H. The relation of mitochondria dysfunction and Parkinson's disease[J]. Chin Pharm J(中国药学杂志), 2009,44(17):1284-1286.
[3] GAKI G S, PAPAVASSILIOU A G. Oxidative stress-induced signaling pathways implicated in the pathogenesis of Parkinson's disease[J]. Neuromolecular Med, 2014,16(2):217-230.
[4] DIAS V, JUNN E, MOURADIAN M M. The role of oxidative stress in Parkinson's disease[J]. J Parkinsons Dis, 2013,3(4):461-491.
[5] HWANG O. Role of oxidative stress in Parkinson's disease[J]. Exp Neurobiol, 2013,22(1):11-17.
[6] SORCE S, KRAUSE K H. NOX Enzymes in the central nervous system: From signaling to disease[J]. Antioxid Redox Signal, 2009,11(10):2481-2504.
[7] NAYERNIA Z, JAQUET V, KRAUSE K H. New insights on NOX enzymes in the central nervous system[J]. Antioxid Redox Signal, 2014,20(17):2815-2837.
[8] KIM Y S, CHOI D H, BLOCK M L, et al. A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation[J]. FASEB J, 2007,21(1):179-187.
[9] QIN L, LIU Y, WANG T, et al. NADPH Oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia[J]. J Biol Chem, 2004,279(2):1415-1421.
[10] WU X F, BLOCK M L, ZHANG W, et al. The role of microglia in paraquat-induced dopaminergic neurotoxicity[J]. Antioxid Redox Signal, 2005,7(5-6):654-661.
[11] GAO H M, LIU B, HONG J S. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons[J]. J Neurosci, 2003,23(15):6181-6187.
[12] QIN L, BLOCK M L, LIU Y, et al. Microglial NADPH oxidase is a novel target for femtomolar neuroprotection against oxidative stress[J]. FASEB J, 2005,19(6):550-557.
[13] ZHANG W, WANG T, PEI Z, et al. Aggregated alpha-synuclein activates microglia: A process leading to disease progression in Parkinson's disease[J]. FASEB J, 2005,19(6):533-542.
[14] INFANGER D W, SHARMA R V, DAVISSON R L. NADPH Oxidases of the brain: Distribution, regulation, and function[J]. Antioxid Redox Signal, 2006,8(9-10):1583-1596.
[15] BLOCK M L, HONG J S. Chronic microglial activation and progressive dopaminergic neurotoxicity[J].Biochem Soc Trans, 2007,35(Pt 5):1127-1132.
[16] LEVESQUE S, WILSON B, GREGORIA V, et al. Reactive microgliosis: Extracellular micro-calpain and microglia-mediated dopaminergic neurotoxicity[J]. Brain, 2010,133(Pt 3):808-821.
[17] HU X, ZHANG D, PANG H, et al. Macrophage antigen complex-1 mediates reactive microgliosis and progressive dopaminergic neurodegeneration in the MPTP model of Parkinson's disease[J]. J Immunol, 2008,181(10):7194-7204.
[18] WU D C, JACKSON-LEWIS V, VILA M, et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease[J]. J Neurosci, 2002,22(5):1763-1771.
[19] GAO H M, LIU B, ZHANG W, et al. Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson's disease[J]. FASEB J, 2003,17(13):1954-1956.
[20] GAO H M, HONG J S, ZHANG W, et al. Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: Relevance to the etiology of Parkinson's disease[J]. J Neurosci, 2003,23(4):1228-1236.
[21] WU X F, BLOCK M L, ZHANG W, et al. The role of microglia in paraquat-induced dopaminergic neurotoxicity[J]. Antioxid Redox Signal, 2005,7(5-6):654-661.
[22] BROWN G C, NEHER J J. Inflammatory neurodegeneration and mechanisms of microglial killing of neurons[J]. Mol Neurobiol, 2010,41(2-3):242-247.
[23] WANG X, MICHAELIS E K. Selective neuronal vulnerability to oxidative stress in the brain[J]. Front Aging Neurosci, 2010,2:12.
[24] GAO H M, HONG J S. Why neurodegenerative diseases are progressive: Uncontrolled inflammation drives disease progression[J]. Trends Immunol, 2008,29(8):357-365.
[25] WILLIAMSON T P, JOHNSON D A, JOHNSON J A. Activation of the Nrf2-ARE pathway by siRNA knockdown of Keap1 reduces oxidative stress and provides partial protection from MPTP-mediated neurotoxicity[J]. Neurotoxicology, 2012,33(3):272-279.
[26] WU D C, JACKSON-LEWIS V, VILA M, et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease[J]. J Neurosci, 2002,22(5):1763-1771.
[27] HUH S H, CHUNG Y C, PIAO Y, et al. Ethyl pyruvate rescues nigrostriatal dopaminergic neurons by regulating glial activation in a mouse model of Parkinson's disease[J]. J Immunol, 2011,187(2):960-969.
[28] L'EPISCOPO F, TIROLO C, CANIGLIA S, et al. Combining nitric oxide release with anti-inflammatory activity preserves nigrostriatal dopaminergic innervation and prevents motor impairment in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease[J]. J Neuroinflammation, 2010,7:83.
[29] ZHANG W, WANG T, QIN L, et al. Neuroprotective effect of dextromethorphan in the MPTP Parkinson's disease model: Role of NADPH oxidase[J]. FASEB J, 2004,18(3):589-591.
[30] ZAWADA W M, BANNINGER G P, THORNTON J, et al. Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade[J]. J Neuroinflammation, 2011,8:129.
[31] RODRIGUEZ-PALLARES J, REY P, PARGA J A, et al. Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derived ROS[J]. Neurobiol Dis, 2008,31(1):58-73.
[32] PESTANA R R, KINJO E R, HERNANDES M S, et al. Reactive oxygen species generated by NADPH oxidase are involved in neurodegeneration in the pilocarpine model of temporal lobe epilepsy[J]. Neurosci Lett, 2010,484(3):187-191.
[33] RODRIGUEZ-PALLARES J, PARGA J A, MUNOZ A, et al. Mechanism of 6-hydroxydopamine neurotoxicity: The role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons[J]. J Neurochem, 2007,103(1):145-156.
[34] LIN Y C, UANG H W, LIN R J, et al. Neuroprotective effects of glyceryl nonivamide against microglia-like cells and 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells[J]. J Pharmacol Exp Ther, 2007,323(3):877-887.
[35] HERNANDES M S, SANTOS G D, CAFE-MENDES C C, et al. Microglial cells are involved in the susceptibility of NADPH oxidase knockout mice to 6-hydroxy-dopamine-induced neurodegeneration[J]. PLoS One, 2013,8(9):e75532.
[36] HERNANDES M S, CAFE-MENDES C C, BRITTO L R. NADPH Oxidase and the degeneration of dopaminergic neurons in parkinsonian mice[J]. Oxid Med Cell Longev, 2013,2013:157857.
[37] BONNEH-BARKAY D, REANEY S H, LANGSTON W J, et al. Redox cycling of the herbicide paraquat in microglial cultures[J]. Brain Res Mol Brain Res, 2005,134(1):52-56.
[38] RAPPOLD P M, CUI M, CHESSER A S, et al. Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3[J]. Proc Natl Acad Sci USA, 2011,108(51):20766-20771.
[39] PURISAI M G, MCCORMACK A L, CUMINE S, et al. Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration[J]. Neurobiol Dis, 2007,25(2):392-400.
[40] DRECHSEL D A, PATEL M. Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson's disease[J]. Free Radic Biol Med, 2008,44(11):1873-1886.
[41] BLESA J, PHANI S, JACKSON-LEWIS V, et al. Classic and new animal models of Parkinson's disease[J]. J Biomed Biotechnol, 2012,2012:845618.
[42] ZHOU H, ZHANG F, CHEN S H, et al. Rotenone activates phagocyte NADPH oxidase by binding to its membrane subunit gp91phox[J]. Free Radic Biol Med, 2012,52(2):303-313.
[43] QIN L, LIU Y, HONG J S, et al. NADPH Oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration[J]. Glia, 2013,61(6):855-868.
[44] WANG Y M, CUI Q F, ZHAO W L, et al. Nrf2/ARE/HO-1 signaling pathway is a new neuroprotective target for Parkinson's disease [J]. Basic Clin Med(基础医学与临床), 2014,34(8):1125-1128.
[45] JIN X, LIU Q, JIA L, et al. Pinocembrin attenuates 6-OHDA-induced neuronal cell death through Nrf2/ARE pathway in SH-SY5Y cells[J]. Cell Mol Neurobiol, 2015,35(3):323-333.
[46] BAE J W, KIM M J, JANG C G, et al. Protective effects of heme oxygenase-1 against MPP(+)-induced cytotoxicity in PC-12 cells[J]. Neurol Sci, 2010,31(3):307-313.
[47] YE Q, HUANG B, ZHANG X, et al. Astaxanthin protects against MPP(+)-induced oxidative stress in PC12 cells via the HO-1/NOX2 axis[J]. BMC Neurosci, 2012,13:156.
[48] CHEN H, LI H, CAO F, et al. 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose protects PC12 cells from MPP(+)-mediated cell death by inducing heme oxygenase-1 in an ERK- and Akt-dependent manner[J]. J Huazhong Univ Sci Technol(Med Sci)(华中科技大学学报:医学版), 2012,32(5):737-745.
[49] ANANTHARAM V, KAUL S, SONG C, et al. Pharmacological inhibition of neuronal NADPH oxidase protects against 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress and apoptosis in mesencephalic dopaminergic neuronal cells[J]. Neurotoxicology, 2007,28(5):988-997.
[50] TAILLE C, EL-BENNA J, LANONE S, et al. Induction of heme oxygenase-1 inhibits NAD(P)H oxidase activity by down-regulating cytochrome b558 expression via the reduction of heme availability[J]. J Biol Chem, 2004,279(27):28681-28688.
[51] DATLA S R, DUSTING G J, MORI T A, et al. Induction of heme oxygenase-1 in vivo suppresses NADPH oxidase derived oxidative stress[J]. Hypertension, 2007,50(4):636-642.

基金

国家自然科学基金资助项目(81450036; 81260196);内蒙古自治区高等学校青年科技英才支持计划资助项目(NJYT-13-B20); 内蒙古自治区人才开发基金资助项目;内蒙古自然科学基金资助项目(2013MS1176、2014MS0892、2014BS0802、2014MS0814、2015BS0812);内蒙古自治区高等学校科学研究资助项目(NJZZ12306; NJZY234;NJZZ14271);内蒙古教育厅高校创新平台培育资助项目;内蒙古人类遗传病研究重点实验室资助项目;赤峰学院科研创新团队建设计划资助项目
PDF(555 KB)

Accesses

Citation

Detail

段落导航
相关文章

/